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Biot-Savart Law: magnetic field of a current element
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It is experimentally 
observed that a moving 
point charge q gives rise 
to a magnetic field

ˆμ
.

4π




0

2

qv r
B =

r

0 is a constant, and its value is 
0=4x10-7 T·m/A

Let’s start with the magnetic field of a moving charged particle.
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This is example 28.1 in your text.

Example: proton 1 has a speed v0 (v0<<c) and is moving along 
the x-axis in the +x direction. Proton 2 has the same speed 
and is moving parallel to the x-axis in the –x direction, at a 
distance r directly above the x-axis. Determine the electric and 
magnetic forces on proton 2 at the instant the protons pass 
closest to each other.
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At the position of proton 2 there is a magnetic field due to 
proton 1.
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Proton 2 “feels” a magnetic force due to the magnetic field of 
proton 1.


 
B 2 2 1F =q v B

  ˆˆ  
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Both forces are in the +y direction. The ratio of their 
magnitudes is





 
 
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Later we will find that

  
2

1
=

c
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Thus

FB

v0

v0

2

0B

2

E

vF
=

F c

If v0=106 m/s, then

 

 
 



26

-5B
28

E

10F
= 1.11 10

F 3 10

Don’t you feel sorry for the poor, 
weak magnetic force?
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From the equation for the magnetic field of a moving charged 
particle, it is “easy” to show that a current I in a little length dl

of wire gives rise to a little bit of magnetic field.

dB

r̂

r

dl

The Biot-Savart Law

ˆμ

4π




 0

2

I d r
dB =

r

I

You may see the equation written using ˆ

r =r r .
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Applying the Biot-Savart Law



I

ds

r

r̂



dB
ˆμ

ˆ
4π
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 

0

2

I ds r r
dB=   where  r =

r r

μ θ

4π

0

2

I ds sin 
dB=  

r


 
B = dB
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Example: calculate the magnetic field at point P due to a thin 
straight wire of length L carrying a current I. (P is on the 
perpendicular bisector of the wire at distance a.)

ˆμ

4π




0

2

I ds r
dB =

r

ˆˆ θ


ds r =ds sin  k

μ θ

4π

0

2

I ds sin
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r

ds is an infinitesimal quantity in the direction of dx, so

μ θ

4π

0

2
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r
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r̂

x

z


a

L
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2 2r = x +aθ
a

sin =
r

I

y

r

x

dB
P
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x

z


μ θ

4π

0

2
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r

a
 

μ μ

4π 4π

0 0
3/23 2 2

I dx a I dx a
dB = =

r x +a

 

μ

4π
L/2

0
3/2-L/2 2 2
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 

μ

4π 
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0
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L
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dB
P
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r̂

x

z


a

 

μ

4π 
L/2

0
3/2-L/2 2 2

I a dx
B =

x +a

look integral up in tables, use the 
web,or use trig substitutions

   
 3/2 1/22 2 2 2 2

dx x
=

x +a a x +a

 

μ

4π

L/2

0
1/22 2 2

-L/2

I a x
B =

a x +a

     
μ

4π

 
 

 
  

0
1/2 1/22 22 2 2 2

I a L/2 -L/2
=

a L/2 +a a -L/2 +a

L
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z
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π

0
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2

I 1
B =
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When L, 
μ

.
π

0I B =
2 a

μ

π

0I B =
2 r

or The r in this equation has a different 
meaning than the r in the diagram!
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B

r

Magnetic Field of a Long Straight Wire

We’ve just derived the equation for the magnetic 
field around a long, straight wire*

μ

π

0 IB =
2 r

with a direction given by a “new” right-hand 
rule.

*Don’t use this equation unless you have a long, straight wire!
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Looking “down” along the wire:
I

B

The magnetic field is not 
constant.

At a fixed distance r from the wire, the magnitude of the 
magnetic field is constant.

The magnetic field direction is always tangent to the 
imaginary circles drawn around the wire, and perpendicular 
to the radius “connecting” the wire and the point where the 
field is being calculated.
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Example: calculate the magnetic field at point O due to the 
wire segment shown. The wire carries uniform current I, and 
consists of two straight segments and a circular arc of radius R 
that subtends angle .

ds

r̂
I



A´

C

A

R

C´

Important technique, handy for 
exams:

The magnetic field due to wire 
segments A’A and CC’ is zero 
because ds is parallel to    along 
these paths.

r̂
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ds

r̂
I



A´

C

A

R

C´

Important technique, handy for 
exams:

Along path AC, ds is 
perpendicular to   .̂r

ˆˆ


ds r =-ds k

ˆ


ds r =ds

If we use the “usual” xyz axes.

ˆμ

4π




0

2

I ds r
dB =

r

μ

4π

0

2

I  ds
dB =

R
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I


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C

A

R

C´

μ

4π

0

2

I  ds
dB =

R

μ

4π
0

2

I  ds
B =

R

μ

4π 
0

2

I
B = ds

R

μ
θ

4π 
0

2

I
B = R d

R

μ
θ

4π 
0IB = d
R

μ
θ

4π

0IB =
R
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Physical view of curl

a) Field lines indicating divergence     A simple way to see the 

b) Field lines indicating curl                 direction of curl using 

right hand rule
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Stokes’s Theorem 

• Stokes’s Theorem relates a closed line integral into a 
surface integral

 H dL H dS  
   

 
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Magnetic flux density, B

• Magnetic flux density is related to the magnetic field intensity       in the free space by

• Magnetic flux  (units of Webers) passing through a surface is found by 

B


H


0B H
 

Weber/m2 or Tesla (T)

1 Tesla = 10,000 Gauss.  

where 0 is the free space permeability, given in units of 

henrys per meter, or

        0  410-7 H/m.

B dS  
 

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Gauss’s law for magnetic fields 

B dS 0
 


or . 

B 0
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EX1 A solid conductor of circular cross section is made of a 

homogeneous nonmagnetic material. If the radius a = 1 mm, 
the conductor axis lies on the z axis, and the total current in 
the direction      is 20 A, find

a) H at  = 0.5 mm

b) B at  = 0.8 mm

c) The total magnetic flux per unit length inside the conductor


za
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Maxwell’s equations for static fields

Integral form Differential form 









 


 


 


 


enc

enc

D d S Q

B d S 0

E d L 0

H d L I

vD

B 0

E 0

H J

 

 

 

 










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The scalar and vector magnetic potentials 
(1)

• Scalar magnetic potential (Vm)               is the simple 
practical concept to determine the electric field. 
Similarly, the scalar magnetic potential, Vm, is defined 
to relate to the magnetic field but there is no 
physical interpretation. 

E V 


H


Assume
mH V 



( )mH J V 0     
 

To make the above statement true, J = 0.
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The scalar and vector magnetic potentials 
(2)

From 0B H 0   
 
 

( )0 mV 0   

2
mV 0 

Laplace’s equation

This equation’s solution to determine

the potential field requires that the potential

on the boundaries is known.
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The scalar and vector magnetic potentials 
(3)

 The difference between V (electric potential) and Vm

(scalar magnetic potential) is that the electric potential is a 

function of the positions while there can be many Vm values 

for the same position.

encH dL I
 


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The scalar and vector magnetic potentials 
(4)

While for the electrostatic case

0E 


0E dL 
 


a

ab
b

V E d L 
 
 does not depend on path.
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The scalar and vector magnetic potentials 
(5)

 Vector magnetic potential (A) is useful to find a 

magnetic filed for antenna and waveguide.

From 

Let assume

so

and

B 0 



( )B A 
 

( )A 0  




0

1
H A


 

 

0

1
H A J 0


    

  
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The scalar and vector magnetic potentials 
(6)

 It is simpler to use the vector magnetic potential to determine

the magnetic field. By transforming from Bio-savart law,

we can write

0 .
4

Id L
A

R




 





The differential form 
0 .
4

Id L
d A

R








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Ex: Determine the magnetic field from the infinite 
length line of current using the vector magnetic 
potential

x

y

z




z

2

2
z




P


zdL dza



Find A


at point P(, , z)


0

2 24

zIdza
d A

z



 






then 

0 0

1 1 zdA
d H d A a

  

 
    

 

 

 


3/ 2
2 24

I dz
d H a

z




 





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Vector magnetic potential for other current 
distributions

• For current sheet 

• For current volume 

0

4
S

KdS
A

R




 





0

4
vol

Jdv
A

R




 




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Magnetic Field of a Current-Carrying Wire

It is experimentally observed that parallel wires exert forces on 
each other when current flows.

I1 I2



F12 F21

I1 I2



F12 F21
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The magnitude of the force depends on 
the two currents, the length of the wires, 
and the distance between them.

μ

π

0 1 2 I I L
F =

2 d

I1 I2



F12 F21

d

L

The wires are electrically neutral, 
so this is not a Coulomb force.

We showed that a long straight wire carrying a current 
I gives rise to a magnetic field B at a distance r from 
the wire given by μ

π

0 IB =
2 r

I

B

r
The magnetic field of one wire exerts a force on a 
nearby current-carrying wire.

This is NOT a 
starting equation
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Example: use the expression for B due to a current-carrying 
wire to calculate the force between two current-carrying wires.

I1 I2



F12

d

Lμ ˆˆ
π

0 2
2

I
B = k

2 d


  
12 1 1 2F =I L B

L2L1

B2μ ˆˆ
π




0 2
12 1

I
F =I Lj k

2 d

x

y

μ ˆ
π


0 1 2

12

I I L
F = i

2 d

The force per unit length of wire is
μ ˆ

π


0 1 212 I IF

= i.
L 2 d
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I1 I2



F12 F21

d

Lμ ˆ

π


0 1

1

I
B =- k

2 d


  
21 2 2 1F =I L B

L2L1

B1
μ ˆˆ
π

 
  

 


0 1

21 2

I
F =I Lj k

2 d

x

y

μ ˆ
π


0 1 2

21

I I L
F =- i

2 d

The force per unit length of wire is
μ ˆ

π


0 1 221 I IF

=- i.
L 2 d
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If the currents in the wires are in the opposite direction, the 
force is repulsive.

I1 I2



F12 F21

d

L

L2L1
y
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I1 I2



F12 F21

d

L2L1
The official definition of the Ampere: 1 A is 
the current that produces a force of 2x10-7

N force per meter of length between two 
long parallel wires placed 1 meter apart in 
empty space.

μ

π

0 1 2
12 21

I I L
F =F =

2 d

π

π




-7
-71 2

12 21 1 2

4 10 I I L L
F =F = =2 10 I I

2 d d
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Magnetic Field of a Current Loop

P

a

x

dB

x



A circular ring of radius a carries a current I as shown.  
Calculate the magnetic field at a point P along the axis of the 
ring at a distance x from its center.

dl
r̂


r

90-

I

y

dBy

dBx



z

Complicated diagram! 
You are supposed to 
visualize the ring 
lying in the yz plane.

dl is in the yz plane. r

is in the xy plane and 
is perpendicular to dl. 

Thus                    

r̂

ˆ .

 d r =d

Also, dB must lie in the xy plane (perpendicular to dl) and is 

perpendicular to r.                
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P

a

x

dB

x



dl
r̂


r

90-

I

y

dBy

dBx



z

ˆμ

4π




 0

2

I d r
dB =

r

μ

4π

0

2

I d
dB =

r

 
μ

4π 

0

2 2

I d
dB =

x a

     

μ μ

4π 4π  

 
0 0

x 1/22 2 2 2 2 2

I d I d a
dB = cos =

x a x a x a

     

μ μ

4π 4π  

 
0 0

y 1/22 2 2 2 2 2

I d I d x
dB = sin =

x a x a x a

By symmetry, By will be 0. Do you see why?                
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Px

dBz x

dl

r̂

r

I

y

dBy

dBx
z

When dl is not centered at z=0, there will be a z-component 

to the magnetic field, but by symmetry Bz will still be zero.
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x x

ring

B = dB

 

μ

4π 

0
x 3/22 2

I a d
dB =

x a

I, x, and a are constant as you integrate around the ring!               

P

a

x

dB

x



dl
r̂


r

90-

I

y

dBy

dBx



z

   

μ μ

4π 4π


 
 0 0

x 3/2 3/22 2 2 2
ring

I a I a 
B = d = 2 a

x a x a

 

μ



2

0
x 3/22 2

 I a  
B =

2 x a
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At the center of the 
ring, x=0.               

P

a

x

dB

x



dl
r̂


r

90-

I

y

dBy

dBx



z

 

μ 2

0
x,center 3/22

 I a  
B =

2 a

μ μ2

0 0
x,center 3

 I a   I
B = =

2a 2a

For N tightly packed concentric rings (a coil)…               

μ0
x,center

 N I
B =

2a
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